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Nonautonomous Submersive Second-Order 
Differential Equations and Lie Symmetries 

Manuel de Le6n 1 and David Martin de Diego 1'2 

Received May 17, 1993 

We give necessary and sufficient conditions for a nonautonomous second-order 
differential equation to be submersive. An application to nonautonomous 
Lagrangian systems is given: the existence of symmetries of the Lagrangian 
permits us to prove that the Euler-Lagrange vector field is submersive and 
hence that the motion equations may be simplified. Our results extend to the 
nonautonomous case the previous ones obtained by Kossowski and Thompson. 

1. INTRODUCTION 

The purpose of  this paper is to characterize submersive nonau- 
tonomous second-order differential equations (SODEs) in order to extend 
the results of  Kossowski and Thompson (1991) to the nonautonomous 
situation. [See also Martinez et al, (1993) for the study of separability of  
SODEs.] A nonautonomous system of  second-order differential equations 
is submersive if there exist local coordinates such that the system contains 
a subsystem with fewer coordinates. On the other hand, a nonautonomous 
system of  second-order differential equations may be interpreted as a vector 
field CM on the stable tangent bundle R x T M  of  some manifold M. Then 
the submersive character may be reinterpreted as the existence of  a folia- 
tion on M in such a way the vector field ~ ,  projects to the local quotients. 
Since a foliation is defined by a family of  local submersions satisfying some 
compatibility conditions, we can introduce the notion of  global submersive 
nonautonomous SODEs as a vector field on R x T M  for which there exists 
a surjective submersion p: M ~ N and a new nonautonomous SODE i v  on 
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R x TN such that ~M projects onto ~ .  We also characterize the global 
submersive character of ~M. 

Nonautonomous SODEs appear in the geometric formulation of 
nonautonomous Lagrangian mechanics. In fact, if L: R x T M - , R  is a 
regular Lagrangian, then the corresponding Euler-Lagrange vector field ~/~ 
is a nonautonomous SODE (Cantrijn et al., 1992; de Le6n and Rodrigues, 
1988, 1989, 1990). In this paper we establish the relationship between the 
submersive character of ~L and the existence of some Lie subalgebras of Lie 
symmetries of ~L. Since a symmetry of L is also a symmetry of ~L, the 
existence of symmetries of the Lagrangian permits us to simplify the motion 
equations. We remark that this procedure is different from those of Marsden 
and Weinstein (1974; Abraham and Marsden, 1978; Marsden, 1992) for the 
autonomous situation (symplectic reduction) and Albert (1989; Cantrijn et 
al., 1992; de Le6n and Saralegui, n.d.) for the nonautonomous situation 
(cosymplectic reduction). A main difference is that by using the actual 
procedure, we obtain a projected nonautonomous SODE on R x TN, while 
applying the cosymplectic reduction procedure, we have that the reduced 
Hamiltonian vector field is not in general a nonautonomous SODE (Mars- 
den et al., 1990). Another difference is that we can reconstruct the dynamics 
in a direct way since we can lift the solutions of a projected nonautonomous 
SODE to the solutions of the submersive nonautonomous SODE by fixing 
the initial conditions. These differences are shown in the last section by 
exhibiting a particular example. 

We notice that our results extend those of Kossowski and Thompson 
(1991), which can be recovered from the present ones. 

The paper is organized as follows. Section 2 is devoted to a brief 
background on tangent and stable tangent geometry, second-order differen- 
tial equations and connections, and nonautonomous Lagrangians systems. 
In Section 3 submersive nonautonomous SODEs are introduced and a 
geometric characterization of the submersiveness is given. In Section 4 we 
study the relationship between the existence of some Lie algebras of Lie 
symmetries with the submersive character of a nonautonomous SODE. 
Furthermore, we prove that the existence of a Lie symmetry of a nonau- 
tonomous Lagrangian can be used to simplify the motion equations. In 
Section 5 we will illustrate our method by means of an example. We also 
apply the cosymplectic reduction to it and analyze the different results. 

2. B A C K G R O U N D  

2.1. Tangent and Stable Tangent Geometry 

Let M be a manifold of dimension m and T M  its tangent bundle. Then 
T M  carries a canonical integrable almost tangent structure JM (Grifone, 
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1974; de Le6n and Rodrigues, 1989). If  (qi, v i) are induced coordinates in 
TM, then we have 

= OV i , JM = 0  

Another geometrical ingredient of  T M  is the Liouville vector field CM, the 
infinitesimal generator of  dilations on TM, and it is locally expressed by 
CM =Vi(O/aVi). The evolution space JI(R,  M )  is the manifold of  jets of  
order one (de Le6n et al., 1992; de Le6n and Rodrigues, 1988, 1989, 1990). 
It is clear that J I (R,  M)  may be canonically identified with R x T M  since 
T M  is the submanifold of  J1(R, M)  of  1-jets with fixed source 0eR.  We 
denote by 

TM: T M  ~ M, ~M: R x T M  ~ R  x M 

the canonical projections defined by 

ZM(j la)  = o'(0), qM(J) iT) = (t, a(t)) 

In local coordinates we have 

ZM(q i  , V ' )  = (q'), [M(t, q', V') = (t, q ' )  

The key geometric structure of  the evolution space JI(R,  M)  is the 
almost stable-tangent structure (almost s-tangent structure, for simplicity). 
Almost s-tangent structures are the odd-dimensional counterpart of  almost 
tangent structures according to the following definition (Oubifia, 1983). 

Definition 2.1. Let V be a (2m + 1)-dimensional manifold. If  there is a 
triple (], z, T), where ] i s  a tensor field of  type (1, 1), z is a 1-form, and T 
a vector field on V such that 

(i) i(_T)z = 1 
(ii) j 2 =  T |  
(iii) rank ] = m + 1 

then we say that V is endowed with an almost s-tangent structure. In such 
a case V is called an almost s-tangent manifold. 

We define a tensor field ] u  on R x T M  by ]M = J~  + (a/at) | dt. In 
local coordinates we have 

A ,  = = 0v- , 

Thus (]M, dr, O/Ot) is an almost s-tangent structure on JI(R,  M)  (Oubifia, 
1983). 
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An almost s-tangent structure (J, ~, T) is integ_rable if  it is locally 
equivalent to (J, dt, O/Ot). One can easily prove that (J, z, T) is integrable if 
and only if its Nijenhuis tensor iVy vanishes and d~ = 0 (Oubifia, 1983; de 
Le6n et al., 1992). 

From now on we shall assume the integrability of  (J, x, T) as a 
G-structure, i.e., around each point of  V there exists a coordinate system 
(t, qi, v i) such that 

-~ = 2 , \ - ~ q t )  = ~ - ~  = O, ~ t  ' z = dt 

For  the sake of  simplicity we assume that 2 = 1 (in the case 2 = - 1  we 
proceed in a similar way). 

Let us recall that there is defined a canonical tensor field on JI(R,  M) 
g iven  by JM = JM -- CM | dt. Hence JM has rank m and satisfies (JM) 2 = O. 
Locally, 

JM = --CM; JM -'~OVi, --~0 

Proposition 2.1. Let p: M ~ N be a smooth mapping and denote by 
Tp: T M  ~ TN the induced tangent mapping. Then we have 

(i) T(IdR x Tp)C~ = CN 
(ii) T(IdR x Tp) ~3/Ot = O/Ot 
(iii) T(IdR x Tp) (JMY)= JN(T(IdR • Tp)Y) 
(iv) T(Idn x Tp)(JMY) = YN(T(Idn x r p ) Y )  

where Y is tangent vector to • x TM. 

Proof It follows by a direct computation in local coordinates. �9 

2.2. Lifts of Vector Fields and Distributions 

Let X be a vector field on a manifold M. We denote by X C the 
complete lift of  X to T M  defined as follows: if ~t is the flow generated by 
X on M, then T~t  is the flow generated by X C on TM. The vertical lift X V 
of  X to T M  is now defined by X V = JMX c. Thus, if X is locally written as 

X = X i~-~- 
Oq ~ 

then we have 

X C = X i ~ ~l_ v j ~Xi ~ 
~q' aqJ Ov ~' 

XV=Xi ~___ 
Ov i 
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Next, we shall define the different types of  lifts o f  vector fields and 
distributions to R x TM. We denote by (t, qi, z, v ~) the induced coordinates 
on T(R x M).  

We denote by ~k: R x T M  ~ T ( R  • M) ,  k ~ R, the canonical injection 
defined by 

zk(j~ a) =j~a ' ,  a'(s) = (t + ks, a(s)) 

Hence in local coordinates we have 

tk(t, qi, V i) = (t, qi, k, v i) 

Let X be a vector field on R x M. We set 

Xv = X V -  d~(XV ) ~ 

where X v is the vertical lift o f  X to T(R • M). Then the vertical lift X vk of  
X to ~ x T M  is the restriction of  X ~ to the submanifold ~k(R • TM),  say 

X V k  = (XV)l,k(R • TM) 

I f  X is locally written as 

x=A t+ x 

then we have 

XVk = Xi ~_~- 
t3v ~ 

Thus, we deduce that 

X vk = X V k ' = X  v Vk, k ' ~ R  

We notice that  X z is precisely the vertical lift o f  X to T M  considered as a 
vector field on R x TM.  

In a similar way we can define the complete lifts as follows. First we 
set 

0 
X ~ = X c -- dz (X  c )  

where X c is the vertical lift o f  X to T(R x M).  Then the complete lift X ck 
of  X to R x T M  is the restriction of  X c to the submanifold tk(R x TM),  
say 

X ck = (XC)),k(R • r~) 
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Then we h a v e  

O i O . ~3X ~ 0 . OX i 0 

I f  X is a vector field on M, then we have 

X c~ = X ck', Vk, k ' ~ R  

We notice that X co is precisely the complete lift o f  X to TM considered as 
a vector field on R • TM.  

For  a vector field X on R x M we denote by X o) its canonical 
prolongation to the jet manifold J~(R, M)  (Prince, 1983; Saunders, 1989). 
f f  X is locally expressed by 

O 0 
X = A ~t + X~--Oq~ 

then we have 

where 

XO) = A ~ + X t + ~ O 
Ov i 

Xi  OX~ i OA .['OX ~ OA i'~ 

Then if (dt,  X )  = 0, we obtain X ~l) = X c~. Moreover, if X is a vector field 
on M, then X ~1) = X c0. 

Let D be a distribution on M. Then D may be lifted to a distribution 
/~ on T M  as follows. I f  {X1 . . . . .  Xr } is a local basis of  D, then { X V , . . . ,  

v c X r ,  X~ . . . . .  X c } is a local basis of /~.  Hence /9  has even dimension, say 
2r. A distribution E on T M  is called a tangent distribution if it is of  the form 
E = / ~  for some distribution D on M (Cantrijn et al., 1986). E is called 
dM-regular if, moreover, D is a regular distribution on M. Here regular 
means that D is involutive (hence D defines a foliation on M also denoted 
by D) and the leaf space M / D  determined by the foliation D is a quotient 
manifold. Of  course, D is involutive (regular) iff E is involutive (regular). 

A distribution D on M may be considered as a distribution on R x M. 
Then the natural l if t /~ is a distribution on R x TM. In the sequel we shall 
consider distributions on R x M (and on ~ x T M )  obtained from distribu- 
tions on M (and on TM).  

2,3. Second-Order Differential Equations and Dynamical Connections 

We say that a vector field ~M on J ' ( R  x M)  is a nonautonomous 
second-order differential equation (or  a nonautonomous S O D E  for simplic- 
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ity) if and only if JM~M = 0 and JM~M = CM- In such a case ~M is locally 
given by 

~M = ~ + V~ ff~qi + r  q, V) Or---- 7 

Obviously, ~M is a nonautonomous SODE if and only if IMaM = 
(O/Ot) + CM. 

A curve a: • ~ M is called a solution of ~M if its canonical prolonga- 
t ion j l a :  R ~ g~ x TM is an integral curve of ~M. Thus, if tr(t) = (qi(t)), then 
o- is a solution of  ~M if and only if it satisfies the following system of 
nonautonomous second-order differential equations: 

d2qi ( " dq i'] 
dt 2 =~iM t'qJ' dt ] (1) 

A (nonhomogeneous) connection (Grifone, 1972) on M (i.e., a connec- 
tion in the fibration TM --+ M) is a tensor field F of type ( 1, 1) on TM such 
that JMF = JM and FJM = - - J M .  This notion can be extended to jet 
bundles of order one as follows. 

A dynamical connection (de Le6n and Rodrigues, 1988, 1989, 1990) on 
J1(R, M) is a tensor field F of type (1, l) such that 

JMF=]MF=]M, rIM= --]M, r'JM= --JM 

Then the local expressions of F are 

F Oq ~ Ov--- ~ 

o 

The operators l = F 2 and m = I d -  F 2 are complementary projection 
operators of an almost product structure on J ' (R ,  M). The local expres- 
sions of I and m are 

1( 0 ) v ~ O -(F~+vJF~) 8 

Oq i 

o 

= Ov-~ 
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m N = N +  , 

(~-~) m(~-~) m = = 0  

If  we set L = I ( j I ( R ,  M)) and M = m(J~(R, M)), then they are comple- 
mentary distributions. We deduce that L (resp. M) is a 2n-dimensional 
(resp. one-dimensional) distribution, locally spanned by {~/aqi,~/av i} 
[resp. globally spanned by (Id - (F) 2) (a/at)]. The vector field ~r = m(a/at) 
is locally expressed by 

a a 
(r '  + vJr~) ~v ~ er=N+ 

i.e., it is a nonautonomous SODE, called a canonical nonautonomous SODE 
associated to F. We now set h = (1/2) (Id + F)/, v = (1/2) (Id - F)I; then h 
and v are complementary projectors in L. Thus, H = h(L), V = v(L) are 
complementary distributions in L, i.e., L = H ~) V. Moreover, the distribu- 
tion V is locally spanned by {a/av i} and then it is precisely the vertical 
distribution of  the fibration tM: R x TM ~ R x M. Hence F defines in fact 
a connection in ~M: R X TM ~ R x M whose horizontal distribution is 
H ~ M .  

Let F be a dynamical connection. Then a tangent vector Y on R x TM 
which belongs to H (resp. H '  = H ~ M) will be called a strong (resp. weak) 
horizontal tangent vector. If  Y is a vector field on R x TM, then Y will be 
called a strong (resp. weak) horizontal vec tor  field if Yz 6H~ (resp. Y~ 6H~) 
for any z ~ R x TM. If  X is a vector field on R x M, then there exists a 
unique vector field X n' on ~ x TM which is weak horizontal and projects 
onto X. We call X z" the weak horizontal lift of X and its H component, 
denoted by X H, is called the strong horizontal lift of X to R x TM. A direct 
computation in local coordinates shows that 

( a ) n "  a ( l ) a ( a )  n' 0 1 �9 0 

Hence, if X is a vector field on M and X = xi(a/aq~), then we obtain 

a 1 X~.Fr 
Xz" = X~ ~ + 2 avJ 

It is clear that FXn '=  X n', since Fh = h. 
A curve a: R - ~ M  is a geodesic of a dynamical connection F if the jet 

prolongation j~a of a is a weak horizontal curve on R x TM. Then a is a 
geodesic of  F if and only if it satisfies the following system of  second-order 
differential equations: 
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( d2q ' dq + F j  t, q,--d~ dt dt 2 = F i t, q, --~ (2) 

From (1) and (2) we deduce that the geodesics of a dynamical 
connection F are precisely the solutions of its associated nonautonomous 
SODE. 

In de Le6n and Rodrigues (1988, 1989, 1990) it is shown that if 
~M is a givennonautonomous SODE on J~(R, M), then FeM defined by 
FeM = --~CPeMJ M is a dynamical connection on jl(•,  M) whose associated 
nonautonomous SODE is precisely ~M" If 

then we have 

o5 CM = -~ + V i + r  q, V) aV---- i 

F ~ i 

Fr = ~q~ + Ov ~ Ov j 

~ - ~  = Ov i 

Let ~M be a nonautonomous SODE on R x T M  and Fr = --Z#eMJM 
the associated connection. Since the nonautonomous SODE associated to 
FeM is just ~M, then we deduce that the solutions of ~M are precisely the 
geodesics of Fr 

From a direct computation in local coordinates we obtain the follow- 
ing result. 

Proposition 2.2. We have 

1. F~M(X v) = - X  v 
2. r ~ , ( x  ~o) = -[r x ' ]  

1 
3. x " ' =  xCo ~ ([~M, x V] + x c~ 

for any vector field X on M. 

2.4. Nonautonomous Lagrangian Systems 

Let L: R x T M ~ - J I ( R , M ) - - , R  be a nonautonomous Lagrangian, 
The energy function associated to L is defined by EL = CM L - - L .  The 
Poincar~-Corton l~form associated to L is defined by 

~ = d,~ ,L - E,~ dt  
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and then the Poincarb-Cartan 2-form associated to L is 

~L = --dotL = - d d j u L  + dEL ^ dt 

In local coordinates we obtain 

EL l aL = v ff~7-- L 

OL ~ i 
~L =-~Taq - E~ dt 

f~L = \OviOt + vJ avJ~qi-- dqi ] dt~ ̂  dq i 

j OZL i O2L d j 02L 
+v ~ d v  ^d t  Ov-~OqJ q ^dq~-ov~Ov---~dv~ ̂ dqJ 

If L is regular, i.e., the Hessian matrix (02L/Ov~Ov j) is nonsingular, 
then (~L, dt) is a cosymplectic structure on J~(R, Q) (de Le6n and Rod- 
rigues, 1988, 1989, 1990; Cantrijn et al., 1992). Consequently, there exists a 
unique vector field ~/~ on JI(R, M) (the Euler-Lagrange veetorfield) such 
that 

i, LtaL = O, i,L at = 1 ( 3 )  

eL is a.nonautonomous SODE and its solutions are just the solutions of the 
Euler-Lagrange equations 

d 0(___'~ O L  =dq'  
- -  - = 0 ;  v; - - "  1 < i < m  
dt kOv i/ - ~  dt ' - 

Let L: J I ( R , M ) ~ R  be a regular Lagrangian. Let ~L be the Euler- 
Lagrange vector field. Then there exists a dynamical connection F on 
Jt(R, M) whose geodesics are solutions of the above motion equations. 
This connection is given by FL = --s176162 

3.  S U B M E R S I V E  N O N A U T O N O M O U S  S E C O N D - O R D E R  

D I F F E R E N T I A L  E Q U A T I O N S  

We shall study the foUowing problem. Suppose that ~M is a nonau- 
tonomous SODE on R • TM. We search for the existence of a local 
coordinate system (x ~, ya), 1 < ~ < n, 1 < a < m - n, around each point of 
M such that the following system of second-order differential equations 

d2q i ( dq:~ 
dt-----T=r t, qJ,---~/,  1 < i < m  (4) 
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may be written as 

dt 2 - ~  t , x  p, dt J 

day" ( dxe dyb ~ 
at = = ~  t , x  e,yb, dt ' ~ J 

In such a case we say that CM is locally submersive. Notice that the 
existence of  such coordinates is equivalent to the existence of  a foliation on 
M, or, in other words, to the existence of  a family of  local submersions 
pA : (x ~, ya) ~ ( x  ~) defining this foliation. ~M is called globally submersive 
(or  simply submersive) if there exists a global surjective submersion 
p: M ~ N of  M onto a manifold N such that 

T(Id  a x Tp)~t~ = ~N 

where r is a nonautonomous  SODE on R x TN. 
The purpose of  this section is to obtain geometric conditions for ~ to 

be submersive. First we have the following result. 

Proposition 3.1. I f  p: M ~ N is a surjective submersion and ~ is a 
nonautonomous  SODE on ~ x T M  which is ( Ida  x Tp)-related to some 
vector field ~N on R x TN, then r is a nonautonomous  SODE. 

Proof. The result follows directly from the definition of  nonau- 
tonomous SODE and Proposition 2.1. �9 

Now suppose that r  is a submersive nonautonomous  SODE on 
g~ x TM. Then there exists a surjective submersion 19: M ~ N and a nonau- 
tonomous SODE on ~ x TN such that ~M and ~u are ( Ida  x Tp)-related, 
i.e., we have T( Ida  x T p ) ~  = ~N- We obtain the following commutat ive 
diagram: 

p r  2 "C M 
N x TM > TM ~ M 

pr2  ZN 
N x TN , TN > N 

where pr z: R x TM ~ T M  and pr2: R x TN ~ TN are the canonical projec- 
tions onto the second factor. Suppose that dim M = m and dim N = n. 
Then the involutive distribution D = Ker  Tp has dimension m - n and its 
canonical lift E = / 3  is precisely E = Ker  T(Tp). It  is clear that E is a 
JM-regular distribution on TM. We denote by the same letter E the 
induced distribution on R x TM. Of  course, E has dimension 2(m - n). 

Now, let FCM = -~r be the dynamical connection on ~ x T M  
determined by CM" From Proposition 2.2 we have 
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FeM XV = --X v 

FeMX c~ = - [~M, X v] 

for any vector field X~D. Since E is locally generated by the vertical and 
C0-1ifts of vector fields belonging to D and since ~M is submersive, we 
deduce that E is FeM-invariant. 

Next, since 

= r e M z ]  - z ]  

we obtain by the submersiveness of ~M and the F~-invariance of E that E 
is also ~r  Fe,~-invariant. 

The main result of this section shows that these properties are a 
geometric characterization of submersive nonautonomous SODEs. 

Theorem 3.1. A nonautonomous SODE ~M on R x TM is submersive 
to a nonautonomous SODE ~N on R • TN if and only if there exists a 
distribution E on • x TM which is JM-regular and FeM- and LPr 
invariant. 

Proof. We only need to prove the sufficiency. In fact, from the results 
of Crampin and Thompson (1985) and Thompson and Schwardmann 
(1991) (also see de Le6n and Rodrigues, 1989) it follows that there exists 
a commutative diagram as above. We need to show that ~ is (Idr x Tp)- 
projectable. In such a case its projection will be a nonautonomous SODE 
because of Proposition 2.2. But ~M is (IdR x Tp)-projectable if and only if 

(i) [~M, XV] ~E 
(ii) [~M, XC~ s E  

for any vector field XeD,  where E =/~  and D = Ker Tp, E = Ker T(Tp). 
(i) Since [~M, Xv] = -Fe~t(XC~ we deduce (i) from the Feu invari- 

ance of E. 
(ii) A direct computation in local coordinates shows that [~M, Xv] + 

X co is vertical. Then we only need to prove 

(ii)' [r XH' leE 

for any vector field X s D .  Furthermore, from (i) and Proposition 2.2 we 
deduce that X ~ ' s E  for any .YeD, Since FeM(X n') = X ~r', we have 

(LeeM = [r x " ' ]  - x " ' ]  

But I([~M, Xn']) = [~u, xH'] and hence 

(~r Fr = (Id - Fr X a''] = V([~M, Xn']) 

where v = �89 Fr Consequently, we obtain that v([~f, Xh"])aE. 
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On the other hand, we have 

X"" = Fr = -- ( Z e o j  M) (X"')  = - [r X V ] + Y,~ [~M, X'*'] 

which implies 

G I G , ,  x " ]  = x " ' +  [~M, x V] 

and thus JM[~M, XH'] ~E. But since [r XA"] eL,  we have 

[G,, x " ]  = h[G,, x " ]  + v[G,, x" ' l  

Then we only need to prove that h[r X H'] eE. To do this, we take a 
local basis {X~, Ya } of vector fields on M such that 

D = < Y a )  

E = <YL r~o> 

Thus, we have 

[~M, x"]  = ~ y~ + ~o Y~a o + A~X~ + ~Xf~ 

Since 

X,[G,, x " ]  = ~oY~ + 8~Xf EE 

we deduce that B~ = 0. Hence 

h[~M, X n'] = #~ YY" eE 

This ends the proof. �9 

Corollary 3.1. Let El . . . . .  E~ be r regular tangent distributions on 
T M  such that E~ c~(+~,~E,.) = 0. Then the Whitney sums E~, @" �9 -(gE~. 
are well defined, where u, . . . . .  u~{1  . . . .  , r}, and s < r. Suppose that the 
Whitney sums ff~ = @~ , ,E~  are also regular. I f  TTM splits as a Whitney 
sum TTM = E~ @ . ' . ~ E ,  then M is a product manifold, say M = 
N, x - - -  x N~ and ~M = (IN, + ' ' "  + ~N~)la • rN~ • rN., where ~N~ is a 
non-autonomous SODE on R x TN~, 1 < u <- r. 

Proof. We remark that if E~ = / ~ ,  then the distributions D ~ , . . . ,  D~ on 
M verify the same pro~perties as the distributions E, . . . . .  E~ on TM and we 
ha ve / ~  = D~, where D, = @ ~ ,  ~D~. Since/5~ is also regular we obtain sub- 
mersions p, : M --, N~, for each u, where N~ = M/D, ,  and non-autonomous 
SODE's ~v~ which are (Ida x Tp)-projections of  CM- We define the mapping 
p : M - , N I  x . . . X  Nr by p (x )=(p , ( x )  . . . . .  p,(x)), x~M.  Hence p is a 
diffeomorphism and T(IdR • Tp)(~M) = ( ~ N 1  " ~ ' "  " " "1- CNr)]R • T N I  . . . .  T N  r" 

I f  ~M satisfies the hypotheses of Corollary 3.1, we say that cM is 
decomposable. If, in particular, TTM splits as a direct sum of  rank 2 
subbundles, then cM is called separable. In such a case there exist local 
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coordinates around each point of M such that (4) may be written as 
follows: 

d2qldt 2 - i ~ ( t, ql, -~-/I dql ~ 

d2qm ( dqm~ 
dt 2 = ~  t'qm' dt J 

The autonomous case was extensively studied by Martinez et al. 
(1993). 

Remark 3.1. We notice that if in Theorem 3.1 the assumption of 
regularity is removed, then the nonautonomous SODE f~, is only locally 
submersive. 

Remark 3.2. Suppose that CM is a SODE on TM. Then ~'M= 
a/c3t + IM is a nonautonomous SODE on R x TM. We denote by 

the connection on TM and the dynamical connection on R x TM deter- 
mined by ~ ,  and ~M, respectively. A direct computation in local coordi- 
nates shows that 

~ ~, = r ~ ,  - (.~cMi~,) �9 at (5) 

Now, let E be a distribution on TM. Then from (5) we deduce that E is 
FcM- and L#r -invariant if and only if E is Fs and LPs F~M-invariant. 
Hence we deduce that the main result of Kossowski and Thompson (1991) 
(Theorem 1.5) may be reobtained from Theorem 3.1. 

To end this section we exhibit how we can obtain the solutions of the 
nonautonomous SODE ~ from the solutions of the projected nonau- 
tonomous SODE IN. It is clear that the solutions of i ~  project onto the 
solutions of ~N. Conversely, if aN : R ~ N is a solution of IN, then we can 
lift aN to a solution of iM, but this lift is not unique. However, if we fix 
initial data on R x TM, then there exists a unique lift. Also, if f :  R x 
TN ~ R is a first integral of iv ,  say !Nf  = 0, then its lift f o (IdR x Tp) is 
a first integral of ~M. 

4. LIE SYMMETRIES AND NONAUTONOMOUS SECOND-ORDER 
DIFFERENTIAL EQUATIONS 

Let IM be a nonautonomous SODE on • x TM. A vector field X on 
R x TM such that 

[x  o~, r = - ~ ( ( d t ,  X } ) ~  
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will be called a Lie symmetry of ~M (Prince, 1983, 1985; de Le6n and 
Marrero, 1993). We restrict ourselves to those Lie symmetries X which are 
vector fields on M. Such a Lie symmetry will be called an autonomous Lie 
symmetry of CM. In such a case the above condition becomes 

[x~', ~M] = IX c~ ~M] = 0 

Since [X co, yco] = [X, Y] co for any vector fields X, Y on M, we deduce 
that the set of  autonomous Lie symmetries of CM is a Lie subalgebra of the 
Lie algebra ~ ( R  x M) of vector fields on ~ x M. 

Let ff be a Lie subalgebra of autonomous Lie symmetries of ~M. We 
know (Cantrijn et al., 1986; Kossowski and Thompson, 1991) that f~ 
determines an involutive distribution f~ on TM (and hence on R x TM) as 
follows: 

= {x v, xcolx~) 
We shall prove that the existence of some Lie subalgebras of au- 

tonomous Lie symmetries of ~M implies the submersive character of ~M" 
In the sequel the horizontal lifts are considered with respect to the 

dynamical connection F~M = - - ~ r  defined by ~M. 

Theorem 4.1. If for each Xef f  the vector field XH'ef~, then ~M is 
locally submersive. Furthermore, if (~ is regular, then ~M is submersive. 

Proof In fact, we apply Theorem 3.1 to the involutive tangent dis- 
tribution E = f~. It only remains to prove that f~ is Feg- and ~r F ~ -  
invariant. To prove this, let us remark that {X v Xa"} spans 3. Then, from 
Fe~(X v) = - X  v, F ~ ( X  H') = X ~" we deduce that f# is Fe~-invariant. 

Now, since 

[~M, Xv] = 2 x t r -  Xc'~ 

we deduce that [~M, XV] e ~  for any Xefr Then 

(~r FeM) (X v) = - ( I d  + Fr [~M, XV] afq 

Also, since Xef9 is an autonomous Lie symmetry, then we have 

(~%, r~ , , ) (x" ' )  = [r x" ' ]  - rcM[~M, x " ]  - (Id - FCM ) [r Xn'] 

But 

implies 

1 
x"" = x c0 - ~ ([r x ~ ] + z c~ 

1 
(s162 F~M ) (X H" ) = - ~ (Id - F~M ) [~M [~M, X v ] + XCo] 
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because of  [~M, Xco] = O. Since [~M, Xv] + X c ~  and it is vertical we 
deduce that 

(~M F~M) (XM') ~# 

Consequently, r is locally submersive. Finally, if, moreover, f~ is JM'reg" 
ular, then the result follows from Theorem 3.1. II 

Proposition 4.1. Suppose that ff is an Abelian Lie algebra of  au- 
tonomous Lie symmetries of  dimension m - n such that X ~'' = X co for any 
Xef~. Then ~M is locally submersive and there exists a local coordinate 
system (x a, ya), 1 < ~ < n, 1 < a < m - n, around each point of  M such 
that (4) may be written as follows: 

d2x" ~ / b dxb\  
dt 2 = ~M~t,X ,--~-) 

dt 2 = ~  t ,x '-dF 

Proof. Since X H ' = X  co, for any X e ~ ,  then XH'e~ .  Thus, from 
Theorem 4.1 we deduce that ~ is locally submersive. On the other hand, 
since N is Abelian, we can choose local coordinates (x ~, ya) around each 
point of  M such that 

yl  . . . . .  0y~- , ;  

Now, from 

( 0 f =(  )co= 0 
~y~ \ ayaJ ay ~ 

we obtain 

Ov a Ov" O, l < a , b < m - n ,  l < f l < n  

Also, 

implies 

o = L k a y a /  , CM = , r  

= = o  Vb,/~ 
Oy a Oy a 
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Hence we have 

e b ~ = ~ M  t , x ,  

which implies the required result. II 

Let L: R x T M  ~ R be a regular Lagrangian with Euler-Lagrange 
vector field ~L- We say that a vector field X on R x M is a symmetry  of  L 
if X ~  = 0. We only consider symmetries of  L which are vector fields on 
M, which will be called autonomous symmetries  of  L. Thus, a vector field X 
on M is an autonomous symmetry of  L if and only if X ~  = XcoL  = O. 
This terminology is justified by the following fact. Let (ID t be the flow on M 
generated by X. Then Ida x TO, is the flow generated by X co. Hence, if X 
is an autonomous symmetry of  L then we deduce that f~i. and dt are 
IdR x T O , - i n v a r i a n t .  Consequently ~/~ is IdR x Tt~ t-invariant,  too, so that 
[ X c ~  ~L] = 0, i.e., X is an autonomous Lie symmetry of  ~L. 

Moreover, we have the following result. 

Theorem 4.2. Let X be an autonomous symmetry of  L and set 
fr = <X>. Then (i) X V L  is a first integral of  L, and (ii) 4/. is locally 
submersive if and only if 

X H" = Xco + AX v 

where 2: R • T M  ~ R. 

Proof. (i) Since iczfl L = 0, icL dt = 1, we deduce 

0 = (icLf~L)(X co) = --ddjML(r X co) + (dEL ̂  dt)(r X c~ 

= -- ~L(XvL)  + XC~ L) + (JM [~L, XC~ L -- XC~ 

= _ r  + XcoL  

since J M [ r  co] = 0  and E r = C M L - L .  Then XcoL = 0  implies 
r  = O. 

(ii) We set fr = <X>. Suppose that X H" = X co + 2 X  v for some func- 
tion 2: R x T M  ~ R. Then Xn'e(r Hence, from Theorem 4.1 it follows 
that cM is locally submersive. 

Conversely, suppose that eL is locally submersive. We know that 

= X c~ - ~ ([eL, x v ]  + Xc~ X H" 

and Z = 1 -~([r XV]  + XC~ is vertical. Then, if fr is Ft.-invariant we have 

r ~ x  C~ = -[~L, x V] + YM [~L, xc~ = - [ ~ ,  x V] 
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which implies [~L, XV] ~ -  Then X~'~fq and consequently Z~fq. Thus, we 
have Z = 2X V for some function 2: R x TM ~ R. �9 

5. A N  E X A M P L E  

Let L: R x T R 3 ~  R be a regular Lagrangian given by 

I eZ~2 _ eXf(t) L(t, x , y ,  z, Yr ~) = Yc~ + ~ + ~  

where (t, x, y, z, :~, )), g) stands for the induced coordinates on R x TR 3 and 
f :  R ~ R. Then we have 

~ L = ~ d x  +(2  + l ) d y + e Z i d z  - 2j~+-~e i +eXf(t) dt 

flL = dx A dp + dy A dYc + eZ dz A d~, + Yc dp A dt + p dYc A dt 

1 z 2  + ~e~d~ A d t  + ~ e  ~ dz Ad t  +eXf( t )dx  Ad t  

and the Euler-Lagrange vector field ~L is given by 

= + ~ x + ~ +  i a l i 2 o  
~r 

Then the Euler-Lagrange equations are 

dx 
-dT=~, ~ = 0  

dy 
- ~ =  y, fi = --eXf(t) (6) 

dz 1 .  2 2S=~, ~ = 

We know that d/dy is an autonomous symmetry of L and a direct 
computation shows that 

Hence, from Theorem 4.2 we deduce that eL is globally submersive 
with 2 = 0. Furthermore, the global submersion is given by 

p: g~3 ~ ~2, p(x, y, z) = (x, z) 
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and then the projected nonautonomous SODE on R + T R  2 ~ R 5 is 

o-7 
Thus equations (6) become 

dx 
= 0  

dz 1 ~2 (7) 

We remark that (6) are time-dependent, while (7) do not depend on the 
time. In fact, ~R2- O/Ot is a SODE on TRL 

Now, let us recall the cosymplectic reduction procedure introduced by 
Albert (1989) (see also Cantrijn et al., 1992; de Le6n and Saralegui, n.d.). 

Suppose that there exists a left action O: G • M ~ M of a Lie group G 
on a cosymplectic manifold (M, fl, r/). We always assume that both G and 
M are connected. The Lie algebra of G will be denoted by (r and its dual 
by if*. For each gEG we put (I)g = (I)(g, �9 ), the induced transformation on 
M. The fundamental vector field associated with A ~ff is the vector field 
AM on M defined by 

d 
AM(X) = ~ (I)(exp tA, x)[t=o 

An action (I) of  a Lie group G on a cosymplectic manifold (M, fl, r/) is 
called cosymplectic if for each g e G the corresponding (I)g is an automor- 
phism of the cosymplectic structure, i.e., (I)~fl = s (t)*~/=~/. 

A momentum map is a function J: M ~ if* such that if we define 

(x) = (a ,  J(x) ) 

for all A~(r then R(Ja)=0 and the Hamiltonian vector field Xsa is just 
AM. The momentum map J is said to be Ad*-equivariant if 

J o (I)g = Ad*-, o J 

for each g~G, where Ad* is the co-adjoint representation of G on (r 
For given #e f t*  we denote by G~ the isotropy group of/~. By the 

Ad*-equivariance of  J it follows that J -  ~ )  in an invariant subset for the 
restriction of �9 to G,. Moreover, if # is a regular value of J, then J -  ~(#) 
is a submanifold of M and �9 induces a smooth action of G, on J-~(#). 
Following Libermann and Marie (1987), we will say that this action is 
simple if the orbit space J-~(#)/G, admits a manifold structure such that 
the canonical projection 7ru: J-~(#) --3"-~(#)/G~ is a surjective submersion. 
This will be, for instance, the case if the action is free and proper. In the 
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sequel it will always be assumed that G u is connected and such that the 
fibers of n u are also connected. 

Albert (1989; see also Cantrijn et al., 1992; de Le6n and Saralegui, 
n.d.) has established the following cosymplectic reduction theorem. 

Theorem 5.1. There exists a unique cosymplectic structure (flu, r/u) on 
the quotient space M u = J - l ( g ) / G  u such that 

j ' f 2  = re* and j*q = ~*r/# 

with j u : J - l ~ ) ~  M the inclusion map and nu: J-l(#)--* M u the canonical 
projection. Further, the restriction of the Reeb vector field R to J - ' ( # )  
projects onto M u and its projection R# is just the Reeb vector field for the 
reduced cosymplectic structure (flu, q~)" 

Now suppose that H is a Hamiltonian function on M such that it is 
G-invariant, i.e., H o ~g = H, for any geG.  Then H oju projects onto a 
function H u defined on M~,. Denote by Xtt the evolution vector field 
determined by H. Then Xtt is tangent to J -  ~(#) and it projects onto M u to 
a vector field (X/~)~, which is precisely the evolution vector field X/~, 
determined by H u on the reduced cosymplectic manifold M~,. Hence the 
dynamics on M is projected onto the dynamics on M u. Notice that 

dim M~, = dim M - dim G - dim G u 

and thus we have reduced the number of  motion equations. The problem 
now is to reconstruct the dynamics. This may be in general a difficult 
problem. 

We next apply this reduction procedure to the Lagrangian L. The Lie 
group is G = R and the action 

(I): R X (R  X TR 3)- '*R X T R  3 

is given by 

@(s , ( t , x , y , z ,  Yc, p,~)) = ( t , x , y  + s ,z ,  Yc, p,~) 

In other words, @s: R x T• 3 ~ R x TR 3 is just @s = Idr  x Tq~s, where 
Cs : R 3 --, R 3 is the flow generated by O/Oy. A direct computation shows that 
the action is cosymplectic for the cosymplectic structure (f~z, dt). In fact, 
this result follows from the invariance of L under the action. Also, EL is 
R-invariant. 

A momentum map for the action is given by 

( J ( t , x , y , z ,  Yc, p , ~ ) , A )  = ( ~ L ( t , x , y , z ,  Yc, P , ~ ) , A a •  

A e R. Thus we obtain 

J ( t , x , y , z , ~ c , ~ , ~ ) =  Yr + l 
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Since OeR is a regular value, we have a reduced cosymplectic structure 
(~L, dt) on J- l (O)/G = R  x R 4. Further, eL is tangent to J-I(O) and 
•-invariant and thus it projects onto a vector field ~L given by 

~3 ~ t) 122 d 
~ L = o t  dx + i  - - e -X f ( t ) -~y - -2  O-~ 

The integral curves of ~'L satisfy the following system of  differential 
equations: 

dx 

dt 

dz 
- - = 2  
dt 

# (8) 
- e - " f ( O  

dt 

dE 1 

In both cases the reduced manifold is just R 5, but the reduced vector 
field is different, say ~a2 ~ ~'t.. Further, ~'L is not a nonautonomous SODE. 
Only the fourth equation is of order 2. This example gives an illustration of 
the differences between both procedures of reduction. 

The above example fits in a more general situation which we shall 
briefly describe. 

Let L: R x T M  ~ R be a nonautonomous regular Lagrangian and 
suppose that G is a Lie group acting on M in such a way that L is 
G-invariant, say 

L o (IdR x Tr ig )  = L 

where ~g: M ~ M is the transformation of M defined by g ~ G. The Lie 
algebra of G will be denoted by f# and its dual by f~*. Then the 
fundamental vector field associated with A ~ is an autonomous symmetry 
of  L. Thus, we have a Lie subalgebra of autonomous Lie symmetries of  ~L 
and we can apply the results obtained in Section 4 in order to decide if ~L 
is submersive or not. In the affimative case, we can reduce the dynamics to 
obtain the solutions of the projected nonautonomous SODE ~N with 
respect to a submersion p: M--,  N. 

Alternatively, since L is G-invariant, then the action of G on the 
cosymplectic manifold R x T M  with cosymplectic structure (ILL, dt) is 
cosymplectic and then we can apply the cosymplectic reduction procedure. 
To do this, we define a map J: R x T M  ~ (9" by 

(J(t ,  qi, vi), A )  = (otL(t , qi, vi), Aa • rM) 
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A eft.  Thus we obtain 

�9 , O L  

J(  t, q', v') = j i ( q )  ~vi ea 

where {e a, 1 <- a < dim G} is a basis of  f#*. If  OJ/Ot = 0 ,  then J is a 
momentum map and we can apply Theorem 5.1. Now, the Hamiltonian 
function is just the energy EL, which is in fact G-invariant. As the above 
example shows, if the Euler-Lagrange vector field ~L is submersive, we 
obtain finer information. 

6. O U T L O O K  

A natural question is to extend the results of  this paper to a more 
general situation. In fact, we can consider a fibration ~M: M ~ S, where S 
is a one-dimensional manifold. Then we define a SODE as a section 
~: jI~M ~ j 2 n M  of  the fibration ( ~ ) ~ :  j 2 ~  ~ j l n ~ ,  where j r ~  denotes 
the manifold of  r-jets of  sections of  ~M (Saunders, 1989; Vondra, 1990). 
The problem may be set as follows: when are there two submersions 
p: M - - * N  and ~Jv: N - * S  such that ~N ~ P = ~M and Tp~(~) is a SODE on 
JI~N? In this paper we have considered the case of  trivial fibrations 
M = S x M ' ,  where S - •. 

We shall study in a forthcoming paper the characterization of  submer- 
sive autonomous differential equations of  higher order. 
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